TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor

نویسندگان

  • Yong Chen
  • Patrick Kanju
  • Quan Fang
  • Suk Hee Lee
  • Puja K. Parekh
  • Whasil Lee
  • Carlene Moore
  • Daniel Brenner
  • Robert W. Gereau
  • Fan Wang
  • Wolfgang Liedtke
چکیده

Detection of external irritants by head nociceptor neurons has deep evolutionary roots. Irritant-induced aversive behavior is a popular pain model in laboratory animals. It is used widely in the formalin model, where formaldehyde is injected into the rodent paw, eliciting quantifiable nocifensive behavior that has a direct, tissue-injury-evoked phase, and a subsequent tonic phase caused by neural maladaptation. The formalin model has elucidated many antipain compounds and pain-modulating signaling pathways. We have adopted this model to trigeminally innervated territories in mice. In addition, we examined the involvement of TRPV4 channels in formalin-evoked trigeminal pain behavior because TRPV4 is abundantly expressed in trigeminal ganglion (TG) sensory neurons, and because we have recently defined TRPV4's role in response to airborne irritants and in a model for temporomandibular joint pain. We found TRPV4 to be important for trigeminal nocifensive behavior evoked by formalin whisker pad injections. This conclusion is supported by studies with Trpv4(-/-) mice and TRPV4-specific antagonists. Our results imply TRPV4 in MEK-ERK activation in TG sensory neurons. Furthermore, cellular studies in primary TG neurons and in heterologous TRPV4-expressing cells suggest that TRPV4 can be activated directly by formalin to gate Ca(2+). Using TRPA1-blocker and Trpa1(-/-) mice, we found that both TRP channels co-contribute to the formalin trigeminal pain response. These results imply TRPV4 as an important signaling molecule in irritation-evoked trigeminal pain. TRPV4-antagonistic therapies can therefore be envisioned as novel analgesics, possibly for specific targeting of trigeminal pain disorders, such as migraine, headaches, temporomandibular joint, facial, and dental pain, and irritation of trigeminally innervated surface epithelia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRPV4-mediated trigeminal pain: behavior assessments and mechanisms

Trigeminal pain represents one of the worst pains that humans can suffer. One of the obstacles towards development of rationally targeted therapies is rooted in shortcomings of available animal models for trigeminal pain. Another roadblock is lack of clear understanding of molecular and cellular mechanisms that underlie this type of pain. TRPV4 is a polymodally activated Ca-permeable nonselecti...

متن کامل

Modeling TMJD pain in the laboratory mouse: role of TRP ion channels

Trigeminal pain syndromes such as temporomandibular joint (TMJ) pain appear to have a particular potential to affect patients in a devastating manner. Prevalence of trigeminal pain disorders in the US is estimated at 2030x10, at >50-75x10 including headaches/migraine. Neural circuit malfunction and maladaptive plasticity arise from altered primary sensory afferents. We have focused on a nerve c...

متن کامل

Small molecule dual-inhibitors of TRPV4 and TRPA1 for attenuation of inflammation and pain

TRPV4 ion channels represent osmo-mechano-TRP channels with pleiotropic function and wide-spread expression. One of the critical functions of TRPV4 in this spectrum is its involvement in pain and inflammation. However, few small-molecule inhibitors of TRPV4 are available. Here we developed TRPV4-inhibitory molecules based on modifications of a known TRPV4-selective tool-compound, GSK205. We not...

متن کامل

Temporomandibular joint pain: a critical role for Trpv4 in the trigeminal ganglion.

Temporomandibular joint disorder (TMJD) is known for its mastication-associated pain. TMJD is medically relevant because of its prevalence, severity, chronicity, the therapy-refractoriness of its pain, and its largely elusive pathogenesis. Against this background, we sought to investigate the pathogenetic contributions of the calcium-permeable TRPV4 ion channel, robustly expressed in the trigem...

متن کامل

Role of μ-opioid receptor in parafascicular nucleus of thalamus on morphine-induced antinociception in a rat model of acute trigeminal pain

The parafascicular nucleus (PFN) of thalamus, as a supraspinal structure, has an important role in processing of nociceptive information. In addition, μ-opioid receptor contributes to supraspinal modulation of nociception. In the present study, the effects of microinjection of naloxone (a non-specific opioid-receptor antagonist) and naloxonazine (a specific μ-opioid receptor antagonist) were in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PAIN®

دوره 155  شماره 

صفحات  -

تاریخ انتشار 2014